If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=1089
We move all terms to the left:
b^2-(1089)=0
a = 1; b = 0; c = -1089;
Δ = b2-4ac
Δ = 02-4·1·(-1089)
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-66}{2*1}=\frac{-66}{2} =-33 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+66}{2*1}=\frac{66}{2} =33 $
| 2x=9x+55 | | 540=((5x+2)+(5x+10)+(3x+5)+(8x+8)+(4x+15)) | | 7x-+6=43 | | 9=7x | | 1000=80x+35 | | 3(4c-7)=4(c-1) | | b^2=7,056 | | 6b =−8 | | 20=-4g | | 1000=35x+80 | | 8y=32(4) | | -4x-6=6+2x | | 3(4c-6)=4(c-1) | | 6x+88=-5x+86 | | 2n+8+2n+3=-5 | | 26•18=y | | 1400=150x+500 | | 8x-(12)=5x+3 | | 9−0.4x=0.2x−0.24 | | 40=3w-30+5w | | 14+10=6z | | 6x+128=8x+144 | | 3x=2(x=3) | | 5x-4+3x+5=25 | | 10c=100; | | h/6=15 | | 7x+20=11x | | 3a+111=180 | | 3a+9=10+5 | | (180x(5-2)=((5x+2)+(5x+10)+(3x+5)+(8x+8)+(4x+15)) | | 4m=32;m= | | 9y+4=27.4 |